Interacting ultracold atomic kicked rotors: loss of dynamical localization
نویسندگان
چکیده
We study the fate of dynamical localization of two quantum kicked rotors with contact interaction, which relates to experimental realizations of the rotors with ultra-cold atomic gases. A single kicked rotor is known to exhibit dynamical localization, which takes place in momentum space. The contact interaction affects the evolution of the relative momentum k of a pair of interacting rotors in a non-analytic way. Consequently the evolution operator U is exciting large relative momenta with amplitudes which decay only as a power law 1/k4. This is in contrast to the center-of-mass momentum K for which the amplitudes excited by U decay superexponentially fast with K. Therefore dynamical localization is preserved for the center-of-mass momentum, but destroyed for the relative momentum for any nonzero strength of interaction.
منابع مشابه
Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors.
The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting...
متن کاملA Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box
– We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of t...
متن کاملUniversality of the Anderson Transition with the Quasiperiodic Kicked Rotor
We report a numerical analysis of the Anderson transition in a quantum-chaotic system, the quasiperiodic kicked rotor with three incommensurate frequencies. It is shown that this dynamical system exhibits the same critical phenomena as the truly random 3D-Anderson model. By taking proper account of systematic corrections to one-parameter scaling, the universality of the critical exponent is dem...
متن کاملUltracold Atoms Driven by a Kicked Rotor in a Finite Box
– We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of t...
متن کاملA universal ionization threshold for strongly driven Rydberg states
The suppression of quantum transport across disordered media is one of the most spectacular consequences of destructive quantum interference. Originally predicted by Anderson [1] in his treatment of electrons propagating in disordered one dimensional lattices, Anderson localization has now become a general concept which prevails in abundant scenarios of coherent quantum transport in the presenc...
متن کامل